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ABSTRACT 

Accurate lung tumor delineation plays an important role in radiotherapy treatment planning. Since the lung tumor has poor 

boundary in positron emission tomography (PET) images, it is a challenging task to accurately segment lung tumor. In 

addition, the heart, liver, bones and other tissues generally have the similar gray value as the lung tumor, therefore the 

segmentation results usually have high false positive. In this paper, we propose a novel and efficient fully convolutional 

network with a trainable compressed sensing module and deep supervision mechanism with sparse constraints to 

comprehensively address these challenges; and we call it fully convolutional network with sparse feature-maps 

composition (SFC-FCN). Our SFC-FCN is able to conduct end-to-end learning and inference, compress redundant features 

within channels and extract key uncorrelated features. In addition, we use deep a supervision mechanism with sparse 

constraints to guide the features extraction by a compressed sensing module. The mechanism is developed by driving an 

objective function that directly guides the training of both lower and upper layers in the network. We have achieved more 

accurate segmentation results than that of state-of-the-art approaches with a much faster speed and much fewer parameters. 
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1. INTRODUCTION 

Lung cancer is the most common cause of cancer-related death worldwide in both men and women [1]. Automatic tumor 

segmentation is important for many clinical applications, such as treatment effect measuring, radiation treatment planning, 

and robust features extraction for high-throughput radiomics. However, it is still a highly challenging task due to the 

complex background, fuzzy boundary, and irregular shape of the lung tumor in medical images. In addition, the heart, liver, 

bones and other tissues generally have the similar gray value as the lung tumor, and therefore the segmentation results 

usually have high false positive. 

PET images have been commonly used for tumor delineation in clinical radiotherapy applications due to their high contrast 

to non-tumor tissues. Several methods have been proposed for automatic lung tumor segmentation from PET images. 

Generally, these methods can be categorized into non-learning-based and learning-based approaches. Non-learning-based 

methods usually rely on the statistical distribution of the intensity, including SUV thresholding, clustering, and graph-

based methods [2]. However, these methods usually have too limited representation capability to deal with the large 

variations of tumor shape. On the other hand, learning-based approaches take the advantage of hand-crafted features to 

train classifiers to achieve good segmentation. 

Recently, deep learning has been shown to achieve superior performance in various challenging tasks, such as classification, 

segmentation, and detection. Deep learning has quickly proved to be the most advanced tool for dealing with various 

medical image processing tasks, including segmentation. The original FCN was proposed in [3], and many variants have 

been developed in the field of medical image processing, including UNet [4], VNet [5] and etc. They have shown 

remarkable success in a variety of computer vision and medical image. 
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                      (a)                                                   (b)                                               

Fig. 1. The middle layer feature maps from a well-trained network. (a) is a middle layer feature maps from UNet, the output 

size is 256×256×64. (b) is a middle layer feature maps from our proposed network, the output size is 256×256×64 

However, CNN performs poor segmentation when the target has the highly similar intensities with its surrounding 

structures especially in lung tumor segmentation. Due to the high intensities of tumors in PET images, other organs such 

as the heart, spine and liver have similar intensities to tumors. This has led to high false positives when networks such as 

UNet are used. First, most of the CNN are unable to discriminate which feature map is more effective to the result in each 

layer. The feature maps are not discriminative to differentiate. Therefore, it is important to extract and select key features 

of lung tumors and remove similar responses from surroundings. Second, the number of filters for each layer needs to be 

manually tried many times when CNN is used for segmentation tasks. In order to capture all the features, we usually set 

the number of the filters to be large, which may result in the oblivion of key features. There is a great need to automatically 

determine the number of filters. As shown in Fig.1, in one the middle layer of the trained UNet, it can be seen that many 

feature channels have the similar feature maps, which results in information redundancy. Therefore, it is important to 

preserve and enhance the effective features of lung tumors and choose the appropriate parameters of CNN. 

Principal component analysis (PCA) was invented by Pearson [6]. As a dimension reduction and feature extraction method, 

PCA has numerous applications in statistical learning, such as handwritten zip code classification, human face recognition, 

eigengenes analysis, gene shaving. Such dimensionality reduction can be a very useful step for visualizing and processing 

high-dimensional datasets, it can reduce different possible explanatory variables to a few principal components while still 

retaining as much of the variance in the dataset as possible. Therefore, in our proposed network, we define a trainable 

compressed sensing module with PCA to preserve and enhance the effective features of lung tumors and remove similar 

responses from surroundings. In addition, a deep supervision mechanism with sparse constraints is also proposed to 

comprehensively address these challenges.  

Our contributions are summarized as follows: 

•A trainable compressed sensing module called CSM is proposed. It can implement information compression, remove 

redundant feature maps, and enhance effective feature maps during the training procedure.  

•Our proposed network can extract key features by CSM and increase these key features by convolutional layers so as to 

obtain excellent segmentation results.  

•A deep supervision mechanism is proposed to supervise the weights in CSM. Our deep supervision mechanism guides 

the features extraction with CSM. Such a mechanism is developed by driving an objective function that directly guides the 

training of both lower and upper layers in the network. 

•Our network can achieve more accurate segmentation results than that of state-of-the-art approaches with a much faster 

speed and much fewer parameter

Proc. of SPIE Vol. 11313  113131O-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2. METHODS 

Fig.2 shows the whole pipeline of our proposed fully convolutional network with sparse feature-maps composition (SFC-

FCN). The input is PET images, and the out-put is a binary segmentation of lesions. The SFC-FCN is first trained by using 

the images with manually annotated lesions to extract features. In the testing process, the images that unknown to SFC-

FCN is used to generate predictions. The details of our proposed method are introduced in the following subsections. 

2.1 Data Augmentation 

Note that each patient has a limited number of lesions, and therefore there are only a small number of slices with lung 

tumors in the whole 3D images. It is thus necessary to generate a large number of slices to tune the massive network 

parameters. To balance the number of the normal and lesion slices, we only perform data augmentation on lesion slices by 

horizontally flipping, shifting and randomly rotating the slices. 

 
Fig.2. An overview of the sparse feature-maps composition fully convolutional network (SFC-FCN). The yellow CSM is the 

compressed sensing module. 

2.2 Network Architecture 

Fig.2 shows the network structure of our proposed method. In this paper, we propose to use fully convolutional network 

(FCN) as the base network for key feature extraction with our compressed sensing module (CSM), and deconvolution from 

deep supervision layers for score map. The details of the CSM and deep supervision mechanism are shown in section 2.3 

and 2.4. 

2.3 Compressed Sensing Module 

PCA can be used as a method of compressed sensing. Eigen decomposition is the most often use to solute a PCA problem. 

The Eigen decomposition formulation of PCA also relates PCA to the singular value decomposition (SVD). Since SVD 

can be interpreted as the best low-rank approximation to the data matrix, we perform SVD as the solution to the compressed 

sensing. 

As illustrated in Fig.3, the input of the CSM is the output from last layer. Let the input of CSM beX ∈ ℝ𝐻 × 𝑊 × 𝐶 , where 

H is the height of feature maps, W is the width of feature maps and C is the channels of current layer. Then we reshape 

them to ℝ𝑁 × 𝐶, where 𝑁 = 𝐻 × 𝑊 is the number of pixels in one feature map. We perform SVD on the reshaped matrix 

X. 

Matrix X can be factorized as X = UƩVT , where U ∈ ℝ𝑁 × 𝑁  and V ∈ ℝ𝐶 × 𝐶  are both orthogonal matrices and Σ ∈
 ℝ𝑁 × 𝐶  is a matrix whose elements are nonnegative real numbers on the diagonal and zero elsewhere. The diagonal 
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elements {𝜆𝑖}𝑖=1
𝐶 , referred to as singular values, are sorted in descending order, and the columns of U and V are referred 

to, respectively, as left and right singular vectors. The covariance matrix may be written as: 

X𝑋𝑇 =  UƩVT𝑉ƩTUT =   UƩƩTUT                               (1) 

where ƩƩT is a diagonal matrix. Thus, singular-value decomposition of X is equivalent to eigen decomposition of X𝑋𝑇. 

The singular values of X are the square roots of the eigenvalues of X𝑋𝑇 , and the left singular vectors of X are the 

eigenvectors of X𝑋𝑇. Eigen decomposition is unique up to the scale of the eigenvectors, which we normalize, and to 

permutations of the eigenvectors and their corresponding eigenvalues, which we sort in descending order. 

 
Fig. 3. The proposed compressed sensing module (CSM). The orange block represents equal feature maps input. The output 

in green, yellow and white colors represents sparse feature-maps composition. 

 

Therefore, if we want to reduce dimension, we can follow: 𝑌𝑟 = 𝑈Ʃ𝑟 , where 𝑌𝑟  is the matrix after SVD dimensionality 

reduction, r is the first largest singular values. However, it is not trainable in this way of information compression. Since 

that the singular values are sorted in descending order, we can define a weight matrix 𝜑, whose elements are trainable 

parameters on the diagonal and zero elsewhere, has the same shape as matrix Ʃ. Our new Y can be defined as: 

Y = U (𝜑Ʃ)                                            (2) 

With the trainable matrix 𝜑, the CSM can implement information compression, remove redundant information, and 

enhance effective information during the training procedure. As a result, the number of channels in the network remains 

the same, but the total amount of information is reduced in each layer, so the feature maps of the layer become sparse and 

uncorrelated with each other. 

Each CSM can be understood as an information compressing technique to convert correlated feature maps into a set of 

linearly uncorrelated feature maps called principal components. This is consistent with our goal of obtain uncorrelated 

feature maps. Finally, we can obtain a set of sparsely feature maps by the CSM. 

2.4  Deep Supervision Mechanism  

We use deep a supervision mechanism with sparse constraints to guide the features extracted by CSM. 

Specifically, we first up-scale some lower-level and middle-level feature volumes using additional deconvolutional layers. 

Then, we employ the softmax function on these full-sized feature volumes and obtain extra dense predictions. For these 

branched prediction results, we calculate their classification errors (i.e., softmax-crossentropy) with regard to the ground 

truth segmentation masks. These auxiliary losses together with the loss from the last output layer are integrated to energize 

the back-propagation of gradients for more effective parameter updating in each iteration. 
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Let 𝜑𝑙 be the weights of the 𝑙 th (𝑙 = 1, 2, …, 𝐿) CSM in our network, we denote the set of all CSM weights by Φ = 

(𝜑1,  𝜑2, …,  𝜑𝐿). With p(𝑥𝑖;  Φ) representing the probability prediction of a pixel 𝑥𝑖 after the softmax function in the 

last output layer, the crossentropy loss can be formulated as: 

ℒ𝑐𝑒( 𝒳;  Φ) =  − ∑ 𝑦𝑖𝑥𝑖∈𝒳 log p(𝑥𝑖 ;  Φ) +  𝜆‖Φ‖2                      (3) 

where 𝒳 represents the training dataset and 𝑦𝑖  is the target class label corresponding to the pixel 𝑥𝑖 ∈ 𝒳, the second 

term is the weight regularization and 𝜆 is the trade-off hyperparameter. 

On the other hand, the deep supervision is exactly introduced via branch networks as the red lines shown in Fig.2. To 

introduce deep supervision from the d th hidden layer, we denote the weights of the first d CSM in the mainstream network 

by Φ𝑑 = (𝜑1,  𝜑2, …,  𝜑𝑑), and then the auxiliary loss for deep supervision can be formulated as: 

ℒ𝑐𝑒𝑑( 𝒳; Φ𝑑) =  − ∑ 𝑦𝑖𝑥𝑖∈𝒳 log p(𝑥𝑖 ;  Φ𝑑)                          (4) 

We can learn the best weights Φ, so as to supervise our CSM to extract key effective feature maps. 

                                                                                                           

2.5 Loss Function 

Although we use data augmentation to enlarge the number of slices which have lesions, the data imbalance is still present 

in a single slice because our segmentation object tumor is too small and only occupies a small part of the slice. In order to 

remedy this imbalance, we use focal loss [7] to supervise the output of last layer, as shown in Equation (5). We adjust the 

parameters α and γ of focal loss for better performance. 

ℒ𝑓𝑜𝑐𝑎𝑙( 𝒳 ) =  − ∑ α(1 − 𝑝𝑘)γ
𝑥𝑖∈𝒳 log 𝑝𝑘                                         (5) 

where 𝑝𝑘  =   𝑦𝑖p(𝑥𝑖), is the estimated probability for class k. 

The total loss consists of three parts: auxiliary softmax-crossentropy loss from middle layers, and softmax-crossentropy 

loss, focal loss from the last layer. The total loss for our network can be seen in Equation (6). 

ℒ𝑡𝑜𝑡𝑎𝑙( 𝒳;  Φ) =  ℒ𝑐𝑒( 𝒳;  Φ) +  ∑ 𝜂𝑑ℒ𝑐𝑒𝑑( 𝒳; Φ𝑑)d∈D + δℒ𝑓𝑜𝑐𝑎𝑙( 𝒳)            (5) 

where 𝜂𝑑 is the balance weight of ℒ𝑐𝑒𝑑 , and δ is the balance weight of ℒ𝑓𝑜𝑐𝑎𝑙 , and D is the set of index of all the hidden 

layers which are equipped with the deep supervision. 

3. RESULTS 

3.1 Datasets 

Our segmentation approach was evaluated in a data set which consists of 54 3D PET images obtained from different 

patients with non-small cell lung cancer (NSCLC). All the PET image size is 512 × 512 × 60, the voxel size is 0.234 

× 0.234 × 1𝑚𝑚3. The reference segmentation was obtained by two professional clinical experts manually on the PET 

images by the guidance of the corresponding CT images. 

3.2 Data Prepossess and Data Augmentation 

In our experiments, we divided 54 3D PET images into 49 training images and 5 testing images, and then cut them into 

2D slices for training. However, taking the imbalance data distributing into consideration, we need to do data augmentation 

using flip, rotation and width or height shift on slices which have lesions. We get a balanced training set, and the total 

nearly training number is 14700. 13-fold training and testing were conducted. 

3.3 Implementation Details 

For data augmentation, we used horizontal flip, rotation and width/height shift with keras ImageDataGenerator to triple 

each lesion image. The corresponding scales are {True, 0.2, 0.2}. We trained the network using stochastic gradient descent 

(SGD) with batch size 4, momentum 0.9 and weight decay 0.0001. We used the “poly” learning rate policy where the 

learning rate is multiplied by (1 − 
𝑖𝑡𝑒𝑟

max _𝑖𝑡𝑒𝑟
)

𝑝𝑜𝑤𝑒𝑟

 with power 0.9 and initial leaning rate 4𝑒−3.                                                       
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3.4 Segmentation Results 

To quantitatively assess the performance of our proposed method, we compared the segmentation results with the ground 

truth according to the following four metrics: dice similarity coefficient (DSC), precision, true positive fraction (TPF) and 

false positive fraction (FPF). The DSC calculates the overlap between the segmentation results and ground truth, and is 

defined as: 

DSC =  
2𝑇𝑃

𝐹𝑃+2𝑇𝑃+𝐹𝑁
                                            (6) 

where, TP is the number of true positives, FP is the number of false positives and FN is the number of false negatives. TPF 

and precision metrics are computed as: 

TPF =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                             (7) 

Precision =  
𝑇𝑃

𝐹𝑃+𝑇𝑃
                                         (8) 

 

We compared the segmentation results to previous methods as shown in Table 1. Some segmentation results of our method 

was shown in Fig.4. Some segmentation results of different methods were shown in Fig.5. In order to prove the validity of 

the proposed module, the corresponding ablation segmentation results were as shown in Table2. Method baseline was 

based on simplified FCN-8. 

 

   

    

Fig. 4. Segmentation results our method. The red curve represents our segmentation results. The green curve represents the 

ground truth.  

 

Table 1. Comparison of the quantitative segmentation results for different methods (mean±standard deviation). 

Methods DSC (%) Precision (%) TPF (%) FPF (%) Param 

DenseNet [8] 57.77±17.31 57.59±26.55 87.47±15.65 0.29±0.24 2.4M 

CGAN[9] 54.10±10.01 75.40±14.58 51.57±16.08 5.66±13.39 142M 

Segcaps[10] 58.98±23.21 50.03±23.43 97.89±3.01 3.29±3.46 1.4M 

UNet 58.04±18.56 60.10±20.08 90.65±10.71 0.12±0.11 31M 

SFC-FCN 79.63±7.99 86.83±7.14 92.05±5.81 0.02±0.01 1M 
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Table 2. The corresponding ablation segmentation results (mean±standard deviation). 

Methods DSC (%) Precision (%) TPF (%) FPF (%) 

Baseline 46.73±20.98 57.59±26.55 50.52±21.78 0.16±0.15 

Baseline with deep supervision 59.79±21.58 76.10±15.71 66.95±13.88 0.14±0.11 

Baseline with CSM 66.42±24.65 83.31±7.39 74.89±3.01 0.02±0.08 

Our SFC-FCN 79.63±7.99 86.83±7.14 92.05±5.81 0.02±0.01 

 

 

Fig. 4. Segmentation results of different methods. The first column is the original image; the second column is the ground 

truth; the next columns are the results of CGAN, DenseNet, Segcaps, UNet; the last column is our segmentation results.  

4. CONCLUSIONS 

 
In this paper, we proposed an automatic lung tumor segmentation algorithm based on fully convolutional network with a 

trainable compressed sensing module and deep supervision mechanism. Our proposed network could extract key 

uncorrelated features by CSM and increased these key features by convolutional layers so as to obtain excellent 

segmentation results and could achieve competitive segmentation results to state-of-the-art approaches with a much faster 

speed and much fewer parameters.  
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